PPARβ Regulates Liver Regeneration by Modulating Akt and E2f Signaling

نویسندگان

  • Hui-Xin Liu
  • Yaping Fang
  • Ying Hu
  • Frank J. Gonzalez
  • Jianwen Fang
  • Yu-Jui Yvonne Wan
چکیده

The current study tests the hypothesis that peroxisome proliferator-activated receptor β (PPARβ) has a role in liver regeneration due to its effect in regulating energy homeostasis and cell proliferation. The role of PPARβ in liver regeneration was studied using two-third partial hepatectomy (PH) in Wild-type (WT) and PPARβ-null (KO) mice. In KO mice, liver regeneration was delayed and the number of Ki-67 positive cells reached the peak at 60 hr rather than at 36-48 hr after PH shown in WT mice. RNA-sequencing uncovered 1344 transcriptomes that were differentially expressed in regenerating WT and KO livers. About 70% of those differentially expressed genes involved in glycolysis and fatty acid synthesis pathways failed to induce during liver regeneration due to PPARβ deficiency. The delayed liver regeneration in KO mice was accompanied by lack of activation of phosphoinositide-dependent kinase 1 (PDK1)/Akt. In addition, cell proliferation-associated increase of genes encoding E2f transcription factor (E2f) 1-2 and E2f7-8 as well as their downstream target genes were not noted in KO livers 36-48 hr after PH. E2fs have dual roles in regulating metabolism and proliferation. Moreover, transient steatosis was only found in WT, but not in KO mice 36 hr after PH. These data suggested that PPARβ-regulated PDK1/Akt and E2f signaling that controls metabolism and proliferation is involved in the normal progression of liver regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duloxetine by Modulating the Akt/GSK3 Signaling Pathways Has Neuroprotective Effects against Methamphetamine-Induced Neurodegeneration and Cognition Impairment in Rats

Background: The neuroprotective effects of duloxetine, as an antidepressant agent, and the neurodegenerative effects of methamphetamine have been shown in previous studies. Nonetheless, their exact neurochemical and behavioral effects are still unclear. In the current study, we sought to clarify the molecular mechanisms involved in the protective effects of duloxetine against methamphetamine-in...

متن کامل

Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway

Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...

متن کامل

IL-6 Regulates Mcl-1L Expression through the JAK/PI3K/Akt/CREB Signaling Pathway in Hepatocytes: Implication of an Anti-Apoptotic Role during Liver Regeneration

AIMS To investigate the role and the regulation of the long variant of myeloid cell leukemia-1 protein (Mcl-1L) during liver regeneration. BACKGROUND Liver regeneration is an important phenomenon after liver injury. The rat partial hepatectomy (PH) model was used to characterize liver regeneration and Mcl-1L expression after PH. METHODS Male Wistar rats were subjected to 70% PH. The express...

متن کامل

Protein tyrosine phosphatase of liver regeneration-1 is required for normal timing of cell cycle progression during liver regeneration.

Protein tyrosine phosphatase of liver regeneration-1 (Prl-1) is an immediate-early gene that is significantly induced during liver regeneration. Several in vitro studies have suggested that Prl-1 is important for the regulation of cell cycle progression. To evaluate its function in liver regeneration, we ablated the Prl-1 gene specifically in mouse hepatocytes using the Cre-loxP system. Prl-1 m...

متن کامل

AKT alters genome-wide estrogen receptor alpha binding and impacts estrogen signaling in breast cancer.

Estrogen regulates several biological processes through estrogen receptor alpha (ERalpha) and ERbeta. ERalpha-estrogen signaling is additionally controlled by extracellular signal activated kinases such as AKT. In this study, we analyzed the effect of AKT on genome-wide ERalpha binding in MCF-7 breast cancer cells. Parental and AKT-overexpressing cells displayed 4,349 and 4,359 ERalpha binding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013